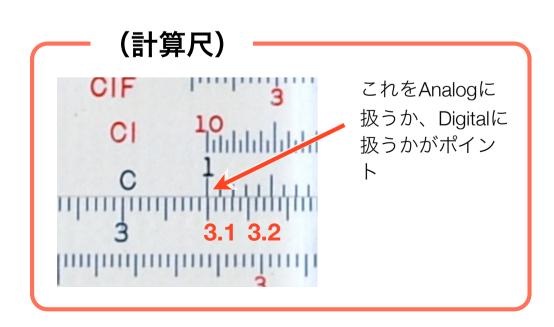
情報科学入門

#6機械計算、二值論理、論理回路

アナログ表現・デジタル表現

- アナログ情報
 - 連続的に変化する情報としてとらえ、連続的に変化する何かに置換して表現する
- デジタル情報
 - 一定の精度での数値によって表現(刻みのある離散的な数値の列として表現)

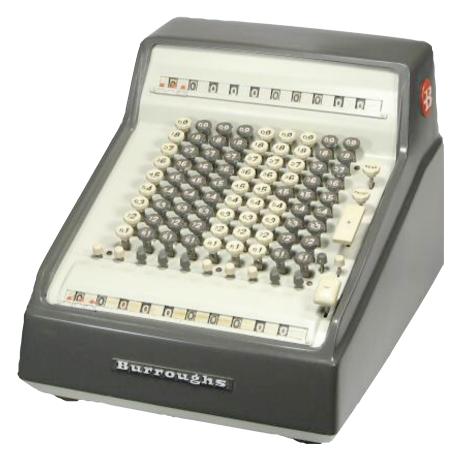


Pascaline (1642): Pascal の加算機

A Pascaline, signed by Pascal in 1652, from Wikipedia, GFDL licensed.

Burroughs:バロースの機械計算機



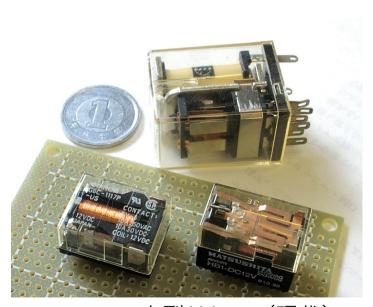


手動加算機:1900年ごろ

電動加算機:1950年ごろ

リレー計算機

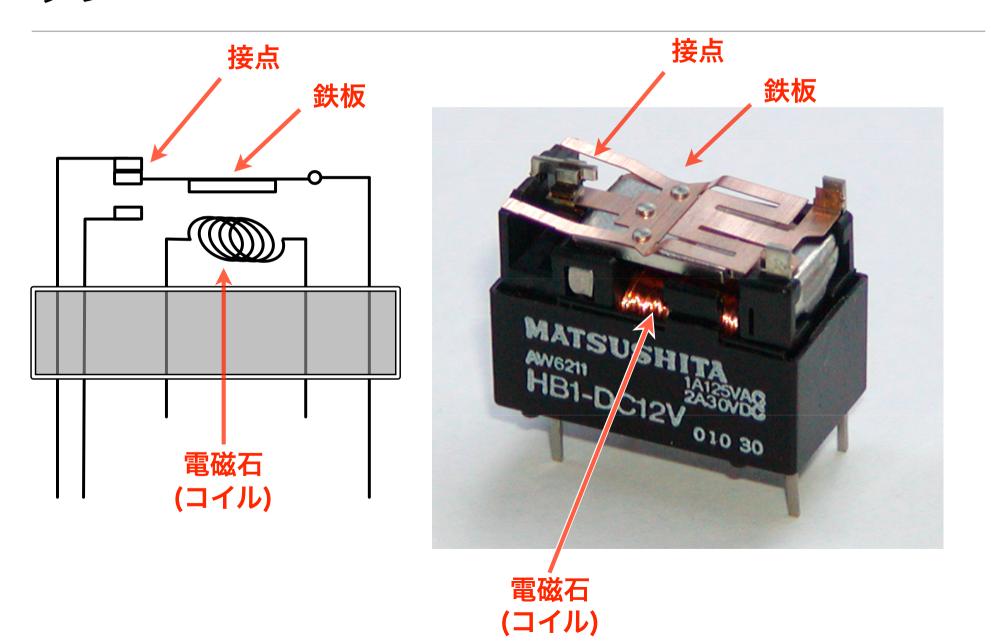
- ・ 機械より早くできるもの
- リレー(電気スイッチ)を利用する

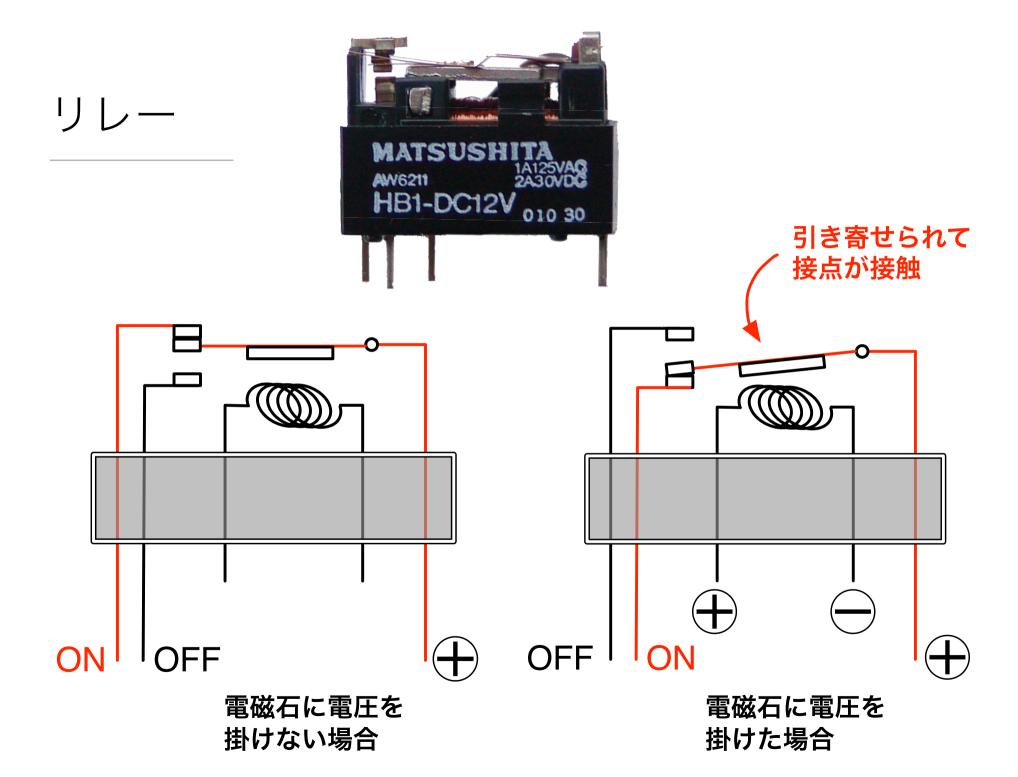


小型リレー (現代)

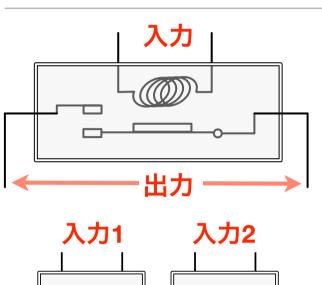
1959, FACOM M128B

リレー





リレーによる AND / OR



電磁石に電圧を掛けるとONになる 単純なリレー

入力	出力
ON	ON
OFF	OFF

	入力1		入力2	
				—
—		出力		→

二つ直列にすると 「両方ON」の時に 「ON」になる

=AND

入力1	入力2	出力
ON	ON	ON
OFF	ON	OFF
ON	OFF	OFF
OFF	OFF	OFF

人力1
入力2
←─出力 ──

二つ並列にすると 「どちらかON」の 時に「ON」になる

=OR

入力1	入力2	出力
ON	ON	ON
OFF	ON	ON
ON	OFF	ON
OFF	OFF	OFF

パターンと計算

- ・ パターン処理による加算の実現
- ・組み合わせの記憶・再現
- 機械処理可能

$$3 + 8 = ?$$

10x10通りのパターンを 機械処理できればよい

それ自体が難しい

	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	10
2	2	3	4	5	6	7	8	9	10	11
3	3	4	5	6	7	8	9	10	11	12
4	4	5	6	7	8	9	10	11	12	13
5	5	6	7	8	9	10	11	12	13	14
6	6	7	8	9	10	11	12	13	14	15
7	7	8	9	10	11	12	13	14	15	16
8	8	9	10	11	12	13	14	15	16	17
9	9	10	11	12	13	14	15	16	17	18

二進法の利用

・二進(二値)であれば4通りで済む

	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	10
2	2	3	4	5	6	7	8	9	10	11
3	3	4	5	6	7	8	9	10	11	12
4	4	5	6	7	8	9	10	11	12	13
5	5	6	7	8	9	10	11	12	13	14
6	6	7	8	9	10	11	12	13	14	15
7	7	8	9	10	11	12	13	14	15	16
8	8	9	10	11	12	13	14	15	16	17
9	9	10	11	12	13	14	15	16	17	18

$$0+0=0$$
 $1+0=1$
 $0+1=1$
 $1+1=10$

VS

	0	1
0	0	1
1	1	10

N進法

- 一桁を幾つの記号で回すか、を意味する
- 右端のドラムが一周まわると、左隣のダイヤルが一つ進む

10進法はドラムに10種の記号がある数え方。

2進法は2種しか記号がない。 短い周期で桁があがるだけで、 回り方は同じ。

二進法による足し算

多数桁の加算は筆算で分解。

1 桁の加算さえでき れば良い。 2進でも同様に 1 桁の加算ができればよい。

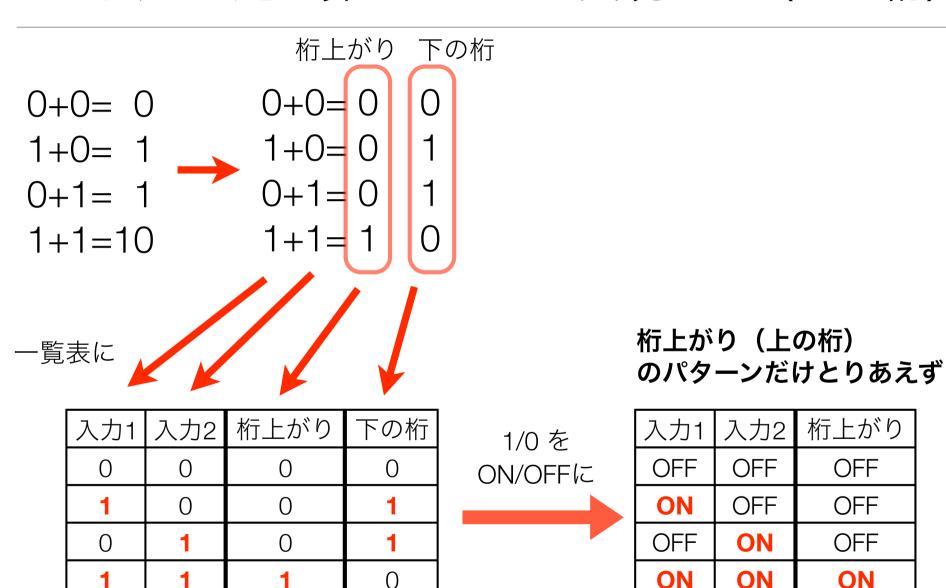
つまり4 通りの加算パターンを機械で実現できれば良い。

$$1+0=1$$

$$0+1=1$$

$$1+1=10$$

二進法での足し算をリレーで実現する(上の桁)



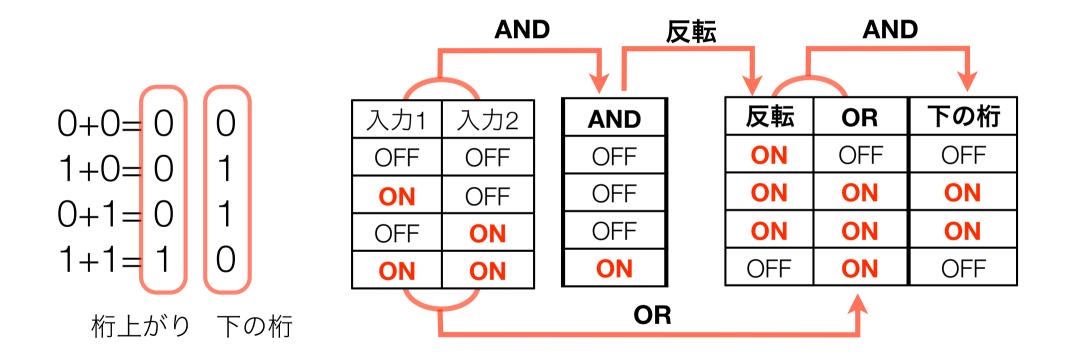
二進法での足し算をリレーで実現する(上の桁)

					-			
	入力1	入力2	桁上がり	下の桁	1/0 を	入力1	入力2	桁上がり
	0	0	0	0	ON/OFFIZ	OFF	OFF	OFF
	1	0	0	1		ON	OFF	OFF
	0	1	0	1		OFF	ON	OFF
	1	1	1	0		ON	ON	ON
					抽象化して こう描く 【	入; ————————————————————————————————————	↓ 1 1	入力2
		2入7	力1接点		_ _	二つ直列	引にする	。と「両方ON

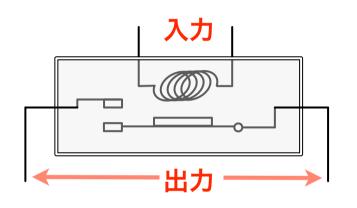
の時に「ON」になる

リレーの図

二進法での足し算をリレーで実現する(下の桁)



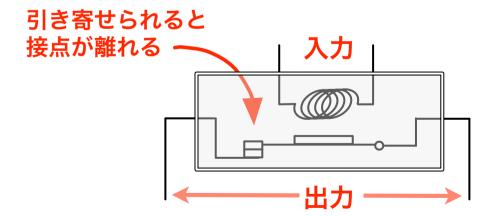
リレーによる反転操作



電磁石に電圧を掛 けると ON

になるリレー

入力	出力
ON	ON
OFF	OFF

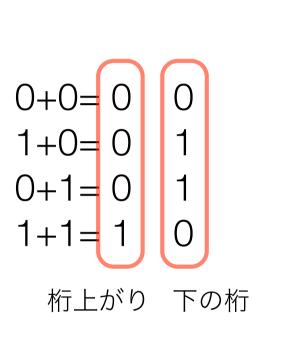


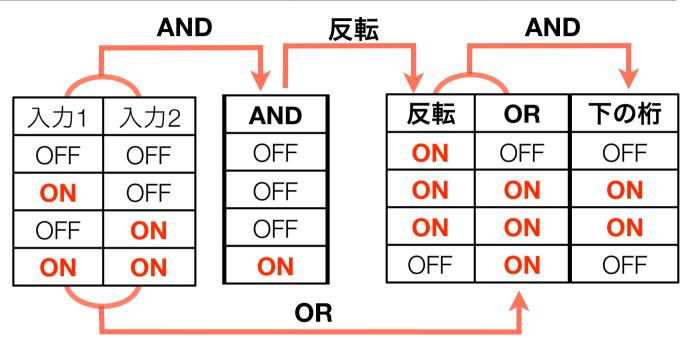
電磁石に電圧を掛 けると OFF

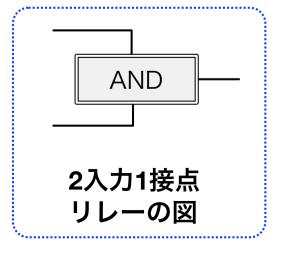
になるリレー

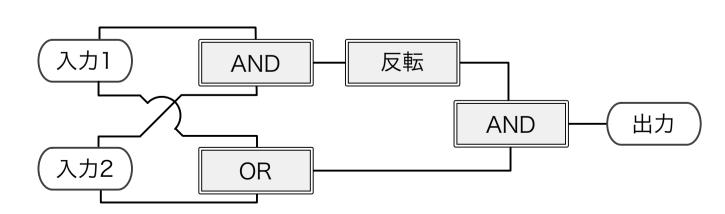
入力	出力
ON	OFF
OFF	ON

二進法での足し算をリレーで実現する(下の桁)

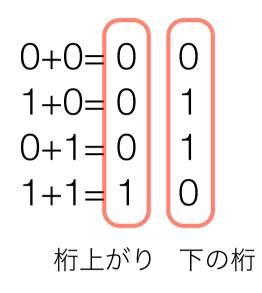




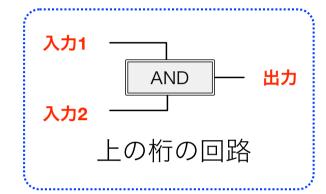


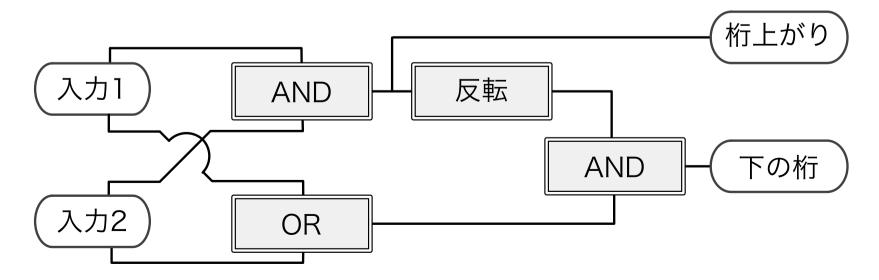


二進法での足し算をリレーで実現する



ON	ON	ON	OFF
OFF	ON	OFF	ON
ON	OFF	OFF	ON
OFF	OFF	OFF	OFF
入力1	入力2	桁上がり	下の桁

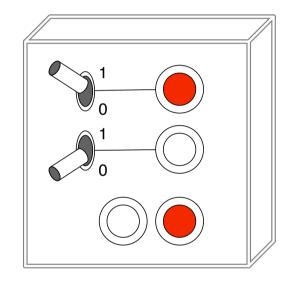




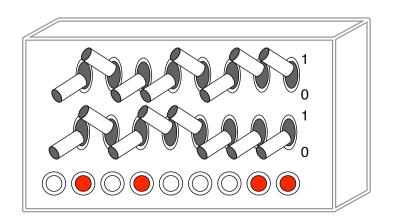
二進法での足し算をリレーで実現する

足し算のパターン

入力1	入力2	桁上がり	下の桁
OFF	OFF	OFF	OFF
ON	OFF	OFF	ON
OFF	ON	OFF	ON
ON	ON	ON	OFF



リレーを 4 つ使う 「計算機」 (1桁・加算専用)



多数桁へ...

IBM System 360 (1964)

IBM System360, at Kyoto Computer Gakuen

IBM System 360 (1964)

IBM System360, at Kyoto Computer Gakuen

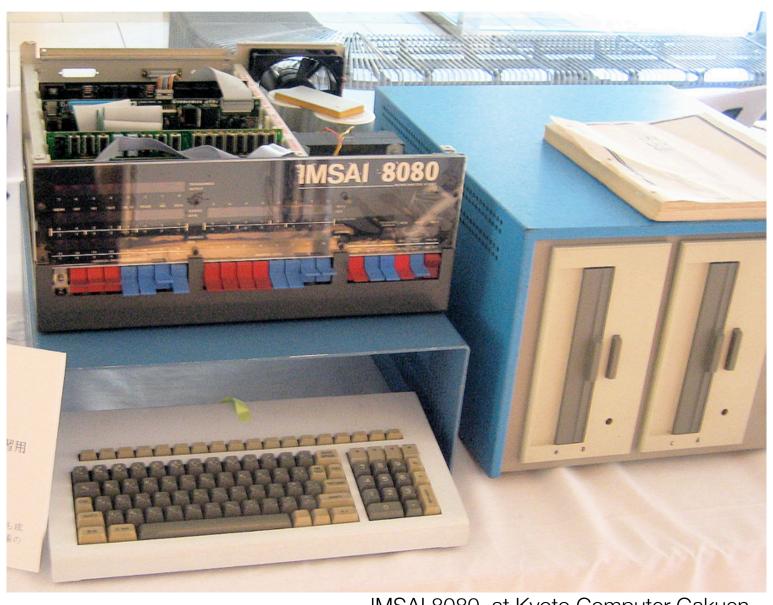
TOSBAC 3400 (1967)

TOSBAC 3400, at Kyoto Sangyo University

TOSBAC 3400 (1967)

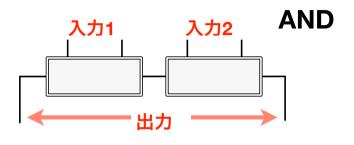
TOSBAC 3400, at Kyoto Sangyo University

IMSAI 8080 (1976)

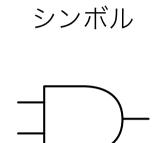


IMSAI 8080, at Kyoto Computer Gakuen

ゲート記号による表記



入力1	入力2	出力
ON	ON	ON
OFF	ON	OFF
ON	OFF	OFF
OFF	OFF	OFF



AND

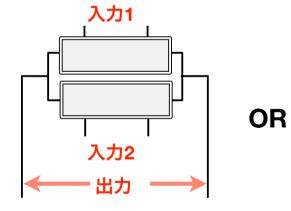
ゲートの

入力1	入力2	出力
1	1	1
0	1	0
1	0	0

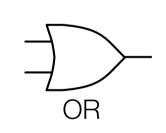
0

0

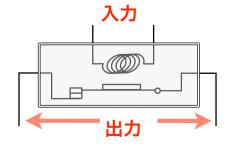
入出力表



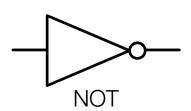
入力1	入力2	出力
ON	ON	ON
OFF	ON	ON
ON	OFF	ON
OFF	OFF	OFF



入力1	入力2	出力
1	1	1
0	1	1
1	0	1
0	0	0

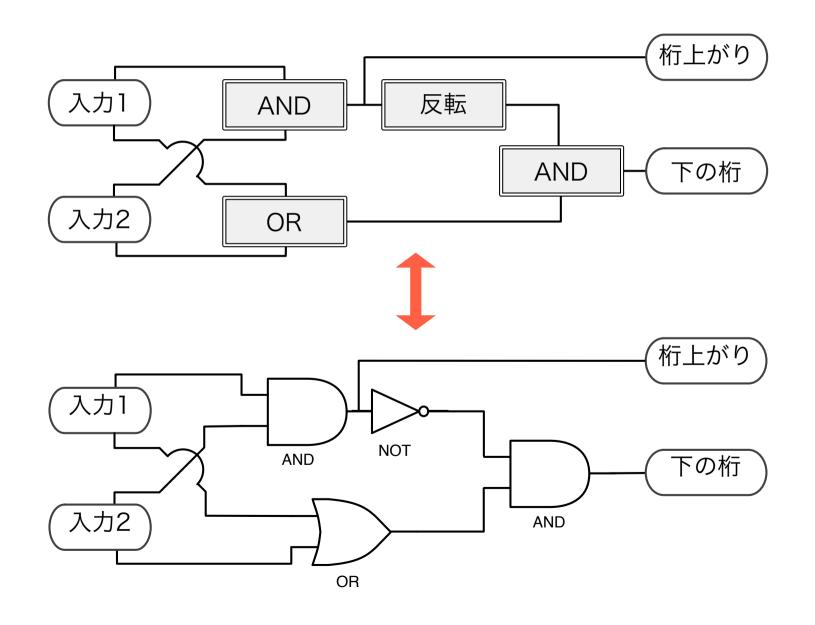


NOT	入力	出た
(反転)	ON	OFF
	OFF	ON



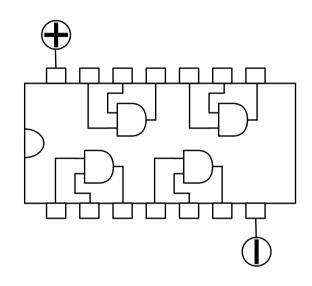
入力	出力
1	0
0	1

ゲート記号による表記



ゲート IC

SN7409 (2-in AND x 4)



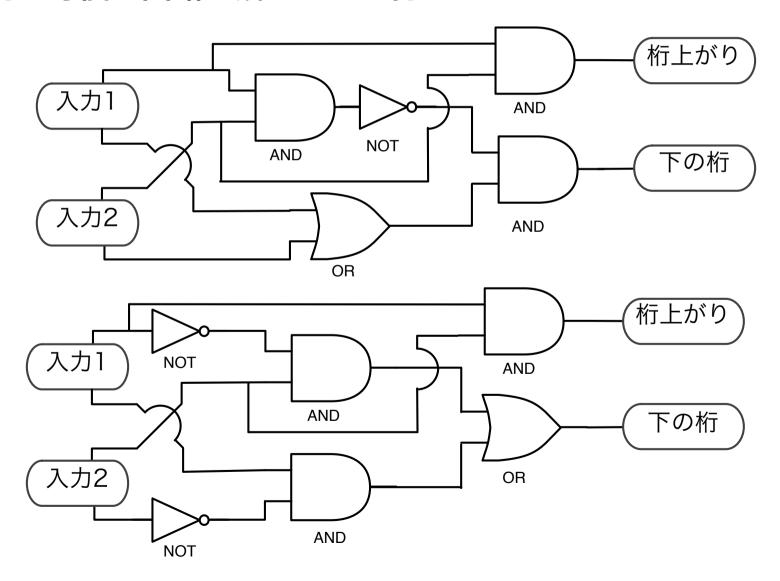
ゲートが幾つか集積されて一つの パッケージに入っているため、回 路全体がさらに小さくなる。

故障も減り、配線などの工数が減って製造コストも下がる。

ICの反応速度は数十ナノ秒

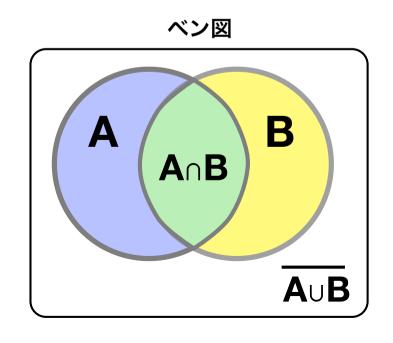
他の回路の可能性

論理的に等価な回路は幾らもあり得る



論理回路

- ・リレー回路による加算:実体はパターン処理
- ・それを論理処理(and, or, not の組み合わせ)で実現
- ・論理を処理する回路が実現できた



真理值表

А	В	A and B
偽	偽	偽
真	偽	偽
偽	真	偽
真	真	真

論理回路

- ・真をON, 偽をOFFとすれば、リレーで論理関数(and, or, not)を実現する電気回路を実装できる
 - → 論理関数は直接的に電気回路に翻訳(変換)できる
- ・ONを1、OFFを0とすれば、二値(二進法)の計算は論 理関数の組み合わせによって実現できる
 - → 二値の計算は論理回路でハードウェア化できる
- ・我々は数値を電気回路によって計算する方法をみつけた

ブール代数

- 1854年発表
- ・言葉による論理を記号で記述

George Boole, 1815-1864, York University The Illustrated London News, 21 January 1865

ブール代数

- ・ 真と偽による論理を代数的に処理する
- ・ 真偽はそれぞれ 1 と 0 に置換
- 論理関数: and, or, not

真理値表

А	В	A and B
偽	偽	偽
真	偽	偽
偽	真	偽
真	真	真

Α	В	A and B
0	0	0
1	0	0
0	1	0
1	1	1

ブール代数とシャノン

- ・1937, ブール代数はリレー回路で実現できることを発見
- ・論理と二進数演算を結びつける

機械で論理が自動処理できる

source: Kyoto Prize, Laureates, (at 1985) https://www.kyotoprize.org/en/laureates/

Mathematical Sciences (including Pure Mathematics)

Claude Elwood Shannon

U.S.A. / 1916-2001

Information Scientist

Professor, Massachusetts Institute of Technology

Establishment of Mathematical Foundation of Information Theory

The creator of information theory. In the late 1940s, he established a mathematical method

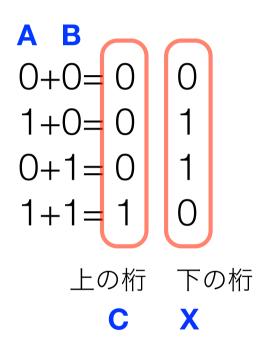
入出力表から論理式へ

AND 入出力表 目的の出力を 桁上がり 入力2 下の桁 入力1 生成する論理 上の桁 を組み立てる 00OFF ()()OFF 0 0 OFF 0()ON 0 **AND AND** 反転 X C X A B 下の桁 反転 入力1 入力2 **AND** OR (carry: 桁上げ) OFF OFF OFF OFF OFF ON **OFF** OFF ON ON ON ON **OFF** ON ON **OFF** ON ON OFF OFF ON ON ON 論理式に書き直してみる **OR** B

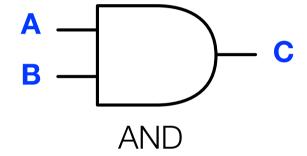
X = (NOT(AANDB))AND(AORB)

C = A AND B

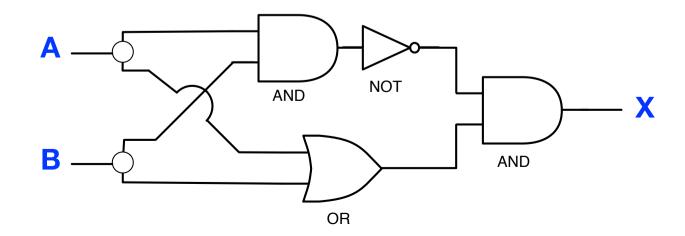
論理式と論理回路



$$C = A AND B$$



X = (NOT(AANDB))AND(AORB)



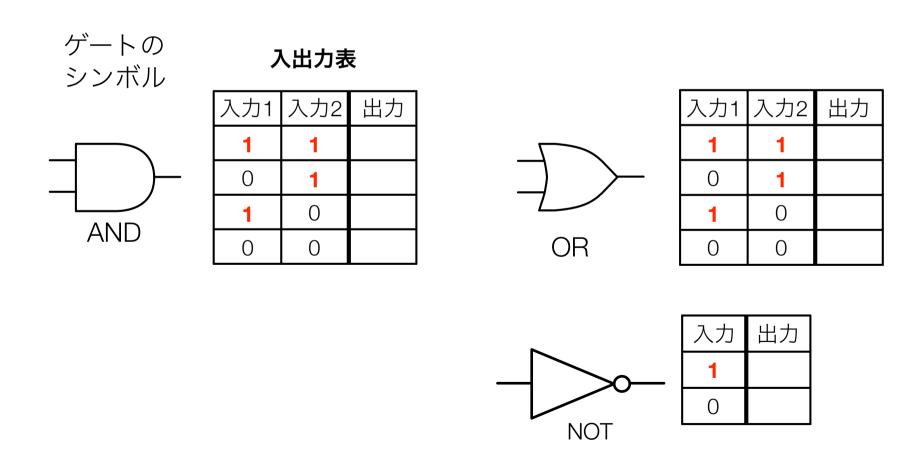
ここまでのまとめ

- ・電気の流れを制御して計算をする方法が見つかった
- ・実体は計算処理ではなく論理処理である
 - 二値の計算を二値論理によって実現する
- ・論理関数は回路によって容易に実現できる

計算する機械(ハードウェア)ができた

復習

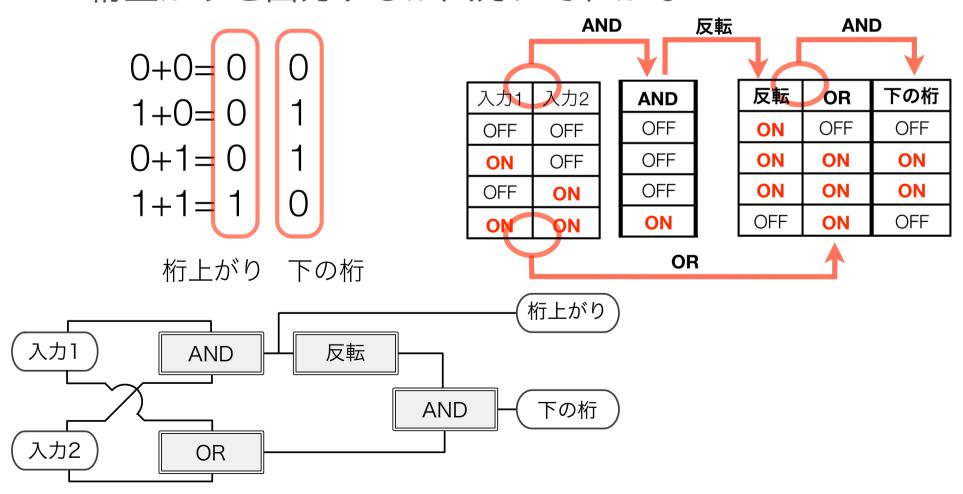
・ 各論理回路(ゲート)の入出力表を埋めてみよ



半加算回路

・ 先の加算回路は完全ではない

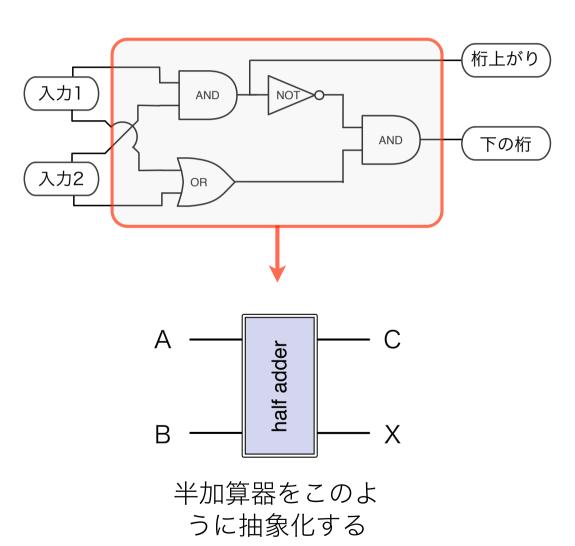
桁上がりを出力するが入力にそれがない



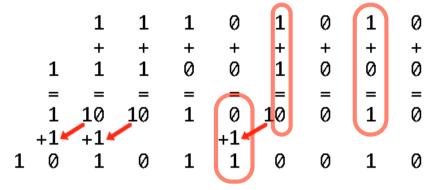
半加算回路

・完全な加算には一桁について二回の加算処理が必要

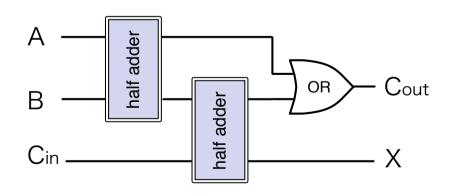
全加算回路



234 (11101010) +456 (111001000) =690

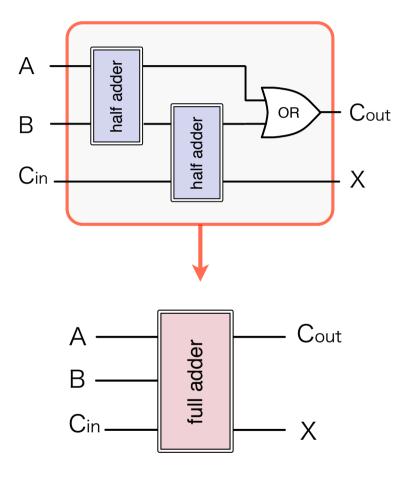


まず A, B を加算し、その下の桁と前の桁からの桁上がりを加算する。

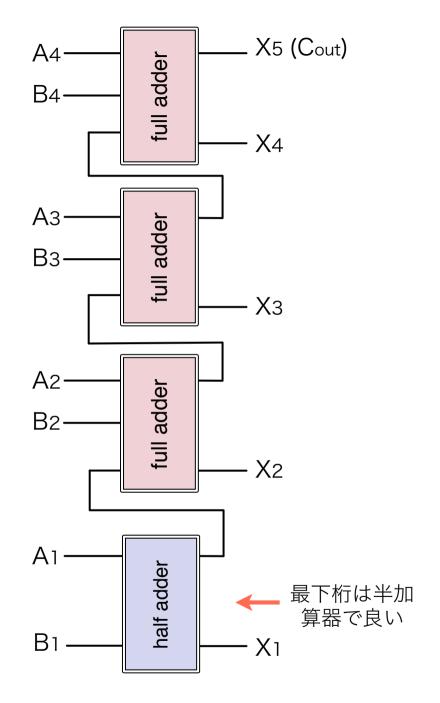


前半の加算と、後半の加算両方で桁上がりが生じることはない。

全加算回路



全加算器をこのよ うに抽象化する



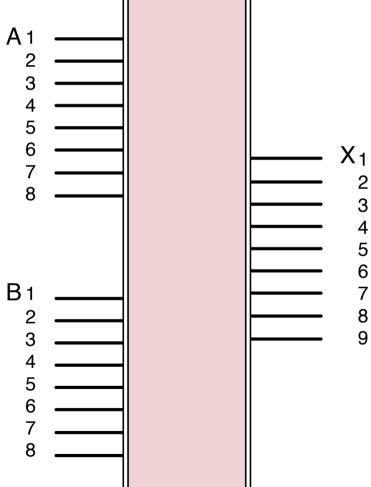
4桁の加算器を1桁の 加算器で構成する

まとめ

・2進8桁の加算器

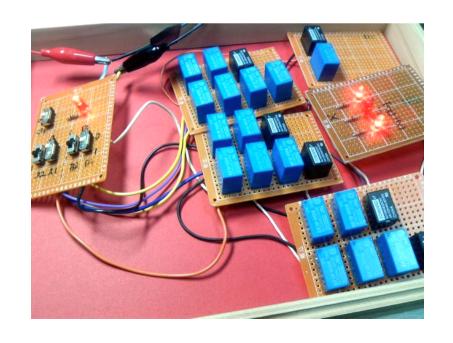
- ・全加算器7+半加算器1で実現可能 A:
- ・全加算器は半加算器 2 + OR
- 半加算器は AND x 2, OR, NOT
- AND, OR はリレー二つ NOT は一つで実現できる
- この構造で作れる、と確信 がもてましたか?

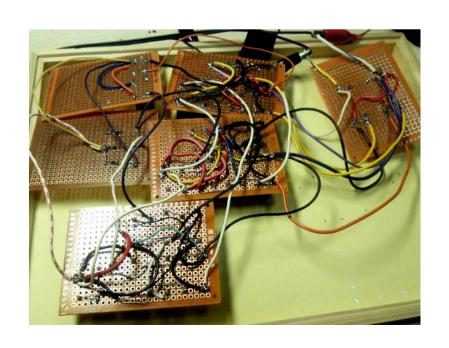
2進8桁の加算器



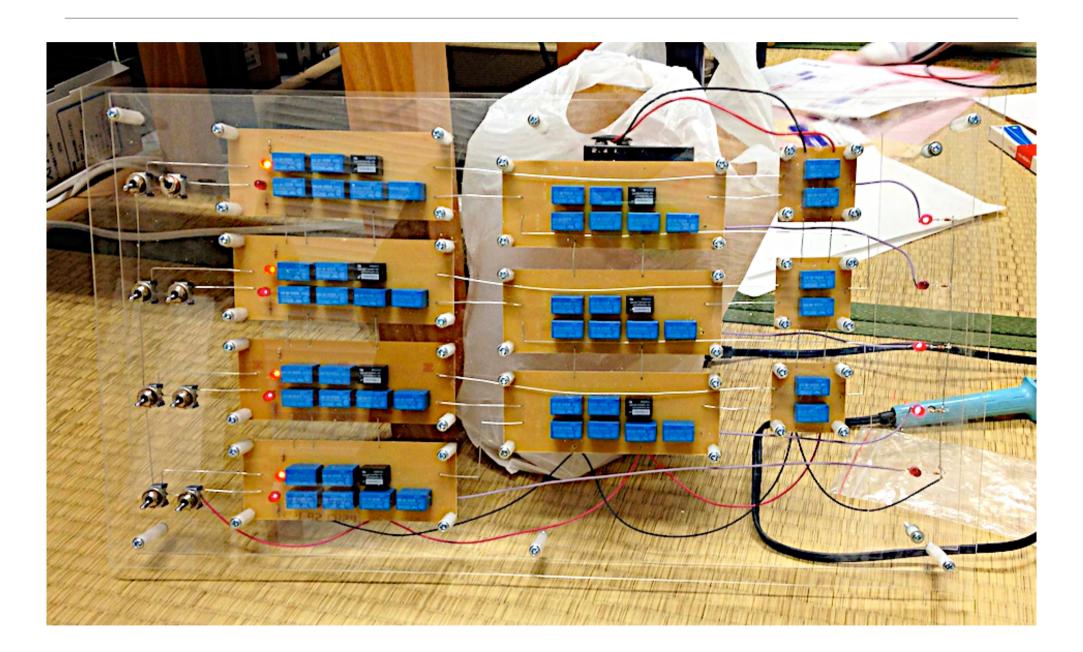
実際に作ってみた

- 2013年度受講生(経営学部)
- 「できそうに思った」から
- ・若干の電子工作経験のみ





実際に作ってみた

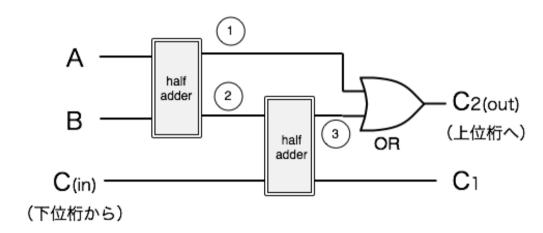


スイッチさえあれば

- スイッチさえあれば、論理は直接回路に翻訳できる どんな複雑な論理であっても必ず実現できる
- 対象がデータにさえなれば、それは機械で処理できる
- ・あとは規模と速度だけの問題
 - より小さな、より高速なスイッチを求めて進化
- これがコンピュータのすがた

課題

・設問:下記の入出力表の空白の部分を埋めよ。



Α	В	C (in)	1	2	3	C1	C2(out)
0	0	0	0	0	0	0	0
0	1	0	0	1	0	1	0
1	0	0					
1	1	0					
0	0	1					
0	1	1					
1	0	1					
1	1	1	1	0	0	1	1